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Abstract - The solution of the advection-diffusion problem
represents a very important issue in numerical modeling in
view of the large number of applications concerned. In the
present paper, we develop an exact Finite Element Petrov-
Galerkin method in order to solve this problem. Our ap-
proach is based on searching the test functions that provide
exact nodal values for a selected class of solutions. Using these
test functions in the general case induces a stabilizing upwind-
ing effect which removes the wiggles obtained with the pure
Galerkin method. The different issues to be addressed in or-
der to build from this approach a general, robust, reliable,
and accurate solution technique are discussed.

I. INTRODUCTION

A wide class of problems of fluid mechanics and heat and
mass transfer is governed by the combined effects of trans-
port and diffusion. Among the various numerical tech-
niques available to solve these problems, the Galerkin Fi-
nite Element (FE) method should be the first mentioned
in view of its simplicity and ease of implementation. In
this case the discrete system is obtained from the continu-
ous weak formulation by selecting the same finite dimen-
sional subspaces for the shape functions (to discretize the
unknowns) and the test functions (to discretize the equa-
tions).
It is well known that the Galerkin FE method is very
well suited for diffusion-dominated problems while it per-
forms quite badly when transport effects prevail. There-
fore the solution of the advection-diffusion equation has
been the object of extensive investigations in the literature
[HUG 79], [BRO 82], [HUG 89], [BAI 93], [COC 00]
since this generic equation exhibits the principal numer-
ical difficulties to be addressed. A single parameter, the
Péclet number Pe, which can be understood as the ratio of
transport versus diffusion effects, governs the advection-
diffusion equation. At low values of Pe, when diffusion
dominates, the discrete eigenvalues of the stiffness (or Ja-
cobian) matrix are basically real and the system is close to
a functional minimization problem. Accordingly, the solu-
tion wiggles tend naturally to be strongly reduced (in the
”energy norm”). On the contrary, at high values of Pe,
when transport prevails, the discrete eigenvalues are closer
and closer to being purely imaginary and the discrete sys-
tem is no longer close to a minimization but better to a sad-

dle point problem, without natural wiggle reduction effect.
Several modifications of the Galerkin FE method have
been considered in order to remove the solution oscil-
lations at high Pe. In view of the rather poor accu-
racy of the Streamline Upwind (SU) technique [HUG 79],
Brooks and Hughes [BRO 82] further developed the cel-
ebrated Streamline Upwind/Petrov-Galerkin (SUPG) tech-
nique, which was further justified in [JOH 84]. Later, in ad-
dition, the Galerkin/Least-Squares method [HUG 89], the
Bubble methods [BAI 93] and the Discontinuous Galerkin
methods [COC 00] were proposed to accurately solve the
advection-diffusion problem without requiring such highly
refined meshes as the Galerkin method does. All these
methods, which basically result in moving to the left in the
complex plane the dominant system eigenvalues, are con-
sistent, since the exact solution is a solution of the discrete
problem in the absence of geometrical boundary effects,
while these methods are not conformal since the discrete
system is not exactly obtained by introducing appropriate
finite dimensional shape and test function spaces into the
original continuous weak formulation.
Nevertheless, defining a both consistent and conformal FE
method such as Galerkin in order to solve the advection-
diffusion problem represents a highly attractive objective
as being quite easy (i) to analyze and (ii) to implement.
In this paper, consistent and conformal methods will be
called exact Petrov-Galerkin FE methods, as obtained from
the continuous weak formulation by selecting different fi-
nite dimensional subspaces for the shape and test functions.
Our objective is to revisit the construction of exact Petrov-
Galerkin FE methods. Restricting ourselves to the 1D and
2D steady problems, it will be shown that no definite con-
clusions against these methods can be drawn since previous
investigations in the literature were performed too early,
without benefitting from today’s available research input.

II. PRINCIPLES OF THE METHOD

Starting from the 1D steady problem, an exact Petrov-
Galerkin FE method is developed and extended to the 2D
case.

A. One-dimensional case

To introduce the principles governing our method, let
us consider the non-dimensional 1D steady advection-



diffusion equation over the domain Ω =]0, 1[:

dT

dx
− 1

Pe
d2T

dx2
= 0 (1)

where T is the temperature field and Pe = vL
κ is the

Péclet number (where v and κ are the assumed constant
fluid velocity and thermal diffusivity while L is the do-
main length). With the boundary conditions T (0) = T0

and T (1) = T1, the exact solution of this boundary value
problem is

T (x) = T0 + (T1 − T0)
ePex − 1

ePe − 1
.

A.1 Weak formulation

The classical weak formulation of the problem is:
Find T ∈ S such that

∫

Ω

T ′
dT

dx
+

1

Pe
dT ′

dx

dT

dx
dx =

∫

Ω

T ′fdx ∀T ′ ∈ V (2)

where S is the affine manifold

S = {T ∈ H1(Ω)|T (0) = T0;T (1) = T1}

while V is the test function space

V = {T ∈ H1(Ω)|T (0) = 0;T (1) = 0} = H1
0 (Ω)

The discrete problem writes as :
Find T h ∈ Sh such that

∫

Ω

T ′h
dTh

dx
dx+

1

Pe
dT ′h

dx

dTh

dx
dx =

∫

Ω

T ′hfdx

∀T ′h ∈ V h
(3)

where Sh is a finite dimensional submanifold of S and V h

a finite dimensional subspace of V to be defined from a par-
tition of Ω. The latter consists of N subintervals [xi−1, xi],
i = 1, . . .N , with 0 = x0 < xi < xN = 1.
Any function T h of Sh has a unique expansion T h =∑N
i=0 T

h
i φi where the coefficient T hi is the value of T h

at node i, T hi = Th(xi). In the same way, the functions

defining V h can be written in the form T ′h =
∑N
i=0 T

′h
i ψi,

where the discrete test functions ψi remain to be defined.

A.2 Galerkin finite element approximation
The Galerkin method consists in considering the discrete
weak formulation (3) with the discrete affine space Sh de-
fined from V h as underlying vector space. Hence as a basis
for V h we use the set of Lagrange basis functions

L = {φi|i = 0, . . . , N}

where φi is related to node xi and is defined by φi ∈ V h
and φi(xj) = δij . The Lagrange functions exhibit the com-
pletion property, which means that constant functions be-
long to V h and therefore that the method is globally and
locally conservative [HUG 00].
The subspaces Sh and V h are thus composed of identical
collections of functions up to the affine part of Sh where the
prescribed essential boundary conditions are introduced.
As it is well-known, this approach fails when applied to
convection-dominated flows while it satisfies the best ap-
proximation property for positive-definite symmetric prob-
lems.

A.3 Petrov-Galerkin finite element approximation
The Petrov-Galerkin approximation consists in selecting
test functions ψi differing from the shape functions φi.

xi−1 xi

φe
i−1 φe

i

xi−1 xielement i

ψi
i−1

ψi
i

Fig. 1. Local linear shape functions and linear or upwinded test
functions for element i.

The basic idea of our approach [PER 96], [NES 03] is to
select test functions ψi that provide a nodally exact solu-
tion

Ti = T (xi)

while preserving the completion property

ψi + ψi+1 = 1 over [xi−1, xi]

For the sake of clarity, test functions will be considered as
perturbed shape functions of the form

ψi = φi + φ̃i

where the perturbation function φ̃i vanishes on element
boundaries without any loss of generality.
Defining the 0-th moments of the perturbation function as

µi0i =
1

xi − xi−1

∫ xi

xi−1

φ̃iidx



µi0i−1 =
1

xi − xi−1

∫ xi

xi−1

φ̃ii−1dx

the obtention of a nodally exact solution only requires that

µi0i = − 1

Pei
+

e−Pei − ePei

2(1− e−Pei − ePei)

µi0i−1 =
1

Pei
+

ePei − e−Pei

2(1− e−Pei − e−Pei)

where Pei = vhi
κ = Pehi is the local Péclet number on

element i. It should be noted that these conditions on µi0i
and µi0i−1 constrain but do not completely provide the per-

turbation functions φ̃ii and φ̃ii−1. The latter can be selected
in such way that the completion property is satisfied. This
is important in order to ensure local and global energy con-
servation. An example of local test functions is shown in
Fig. 1.
A simple asymptotic analysis shows that, for convection-
dominated problems, these test functions provide an up-
winding effect,

lim
Pei→∞

µi0i =
1

2

while for diffusion-dominated problems they are close to
the shape functions,

lim
Pei→0

µi0i = 0

Let us emphasize that our approach provides an exact
Petrov-Galerkin FE method as opposed to the classical
SUPG method [BRO 82], [JOH 84], which achieves stabi-
lization by adding an upwinding term to the original weak
formulation (3).

B. Two-dimensional case

Let us now try to extend the method to the non-dimensional
2D advection-diffusion equation. The boundary value
problem consists in finding a temperature field T (x) such
that

v ·∇T − 1

Pe∆T = 0 in Ω (4)

with T = T on Γ and where Ω is an open bounded set of
R2 with a piecewise linear boundary Γ, while T : Γ → R
is prescribed and κ and v are constant thermal diffusivity
and normalized fluid velocity.

Equation (4) admits the following 1D solutions:

T (x) = 1

T (x) = v⊥ · x

T (x) = e
(m·v)(m·x)
κm·m

where v⊥ is obtained from a quarter of turn of v and m is
an arbitrary vector.

B.1 Weak formulation
The variational formulation of the boundary value problem
(4) writes as:
Find T ∈ S such that

∫

Ω

T ′v·∇TdΩ+
1

Pe

∫

Ω

∇T ′·∇TdΩ = 0 ∀T ′ ∈ V (5)

with the function spaces

S = {T ∈ H1(Ω)|T = T on Γ}

V = {T ∈ H1(Ω)|T = 0 on Γ} = H1
0 (Ω)

B.2 Galerkin finite element approximation
The Galerkin finite element approximation corresponding
to the previous weak formulation writes as:
Find T h ∈ Sh such that

∫

Ω

T ′hv·∇T hdΩ+κ

∫

Ω

∇T ′h·∇T hdΩ = 0 ∀T ′h ∈ V h

where the finite element spaces Sh ⊂ S and V h ⊂ V con-
sist of continuous piecewise linear polynomials defined on
a conforming triangulation T h of Ω.
The Lagrange shape function φi associated to node i is de-
fined by φi(xj) = δij while its support extends over all
the elements sharing this node (Fig. 2). It is convenient to
define the local shape function φei as the restriction of φi
over the element Ωe, with φi|Ωe = φei . For the sake of con-
venience, we adopt the local node numbering depicted on
Fig. 3. The relationship between local and global number-
ings is provided by the integer expressions nek (k = 1, 2, 3).
For example, in Fig. 3, ne1 = j, ne2 = k, ne3 = i.

B.3 Petrov-Galerkin finite element approximation
We want to find test functions ψi that provide exact nodal
values for the solution

Ae
(m·v)(m·x)
κm·m +Bv⊥ · x + C



i

v

j k

Fig. 2. Support of the shape and test functions associated to
node i.

i(3)

k(2)

j(1)

Fig. 3. Local numbering system.

Again, the test functions ψi are considered as modifications
of the Lagrange shape functions,

ψi = φi + φ̃i

The perturbation function φ̃i is required to have the same
support as φi and to vanish on the element boundaries.
Moreover the set of test functions must contain the constant
functions in order to ensure global and local conservation
properties. Obtaining a nodally exact solution requires the
following conditions to be satisfied by the 0-th order mo-
ments of the perturbations:

µe01 =
[
(Pee1 −Ge11)e−4Ge32Pee,m1 −Ge12e

−4Ge13Pee,m2

−Ge13e
−4Ge21Pee,m3

]
/D − 1

3

(6)

µe02 =
[
(Pee2 −Ge22)e−4Ge13Pee,m2 −Ge23e

−4Ge21Pee,m3

−Ge21e
−4Ge32Pee,m1

]
/D − 1

3

(7)

µe03 =
[
(Pee3 −Ge33)e−4Ge21Pee,m3 −Ge31e

−4Ge32Pee,m1

−Ge32e
−4Ge13Pee,m2

]
/D − 1

3

(8)

where

D = Pee1e−4Ge32Pee,m1 + Pee2e−4Ge13Pee,m2 + Pee3e−4Ge21Pee,m3

and the non-dimensional parameters Geij , Peei and Pee,mi
are defined in the sequel.
The geometrical factors Geij are defined by

Geij = Ae∇φei ·∇φej
where Ae is the area of the element Ωe.
Firstly, the geometrical matrix [Geij ] has the following
properties:

1) it is symmetric,
2) the sum of the elements of a row or a column is zero,
3) its adjoint matrix det(Geij)

[
Geij
]

is proportional to a
matrix whose elements are the same.

Therefore this matrix, which characterizes the shape of el-
ement e, has only two degrees of freedom.
Secondly, the element Péclet numbers Peei are defined by

Peei =
Ae

κ
v ·∇φei

while the element Péclet numbers associated to direction
m are defined by

Pee,mj =
Ae(m · v)(m ·∇φej)

κ(m ·m)

and coincide with Peei when m = v. It is easy to show that
these Péclet numbers satisfy the relations

∑

n(e)

Pee,mn = 0

∑

e(i)

Pee,mi = 0

where n(e) and e(i) stand for the nodes belonging to ele-
ment Ωe, and the elements sharing node i, respectively.



III. FIRST RESULTS

We here present some typical results obtained by means
of our method in comparison with results obtained with
the classical SUPG method [BRO 82]. As already men-
tioned, the SUPG method achieves stabilization by adding
an upwinding term to the original weak formulation. The
upwinding level is controlled by a specific element Péclet
number Pee = ‖v‖he/κ, where he stands for the element
characteristic size.

A. Thermal boundary layer problem

This test has been proposed in [FRA 92]. The problem
statement is depicted in Fig. 4.
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Fig. 4. Thermal boundary layer problem: problem statement

This situation may be viewed as the modelling of the for-
mation of a thermal boundary layer at the lower and down-
stream boundaries of a fully developed shear flow between
two parallel plates, where the upper plate is moving while
the bottom plate is fixed. The mesh consists of rectangu-
lar triangles, providing 21 equally spaced nodes in the x-
direction and 11 equally spaced nodes in the y-direction.
A first numerical experiment has been performed with a
global Péclet number of 103. The resulting element Péclet
number is Pee = 50y, with a maximum of 25 along the up-
per plate (he being taken as the horizontal element length).
From a numerical viewpoint, the problem is diffusive in
the vicinity of the bottom plate while it is more and more
advective for increasing y. Figs. 5 and 6 show the temper-
ature isolines obtained by means of the SUPG method and
our method, respectively. It can be observed that both so-
lutions are numerically stable, but that the SUPG solution
suffers from a slight overshoot contrarily to the solution
provided by our exact Petrov-Galerkin FE method.
A second numerical experiment has been performed with a
global Péclet number of 106. From a numerical viewpoint,
the problem is now strongly advective. Figs. 7 and 8 show
the temperature isolines obtained with the SUPG method
and our method, respectively. The solution provided by
our method clearly behaves much better than the SUPG so-
lution. In particular, it is noticeable that our solution acco-
modates a much smaller overshoot.
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0.549 1.040

Fig. 5. Thermal boundary layer problem: results from SUPG
method with Pe = 1 000. An overshoot of 4% is observed
near the outflow (x = 0.05, y = 0.25).
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Fig. 6. Thermal boundary layer problem: results from our exact
Petrov-Galerkin FE method with Pe = 1 000 and m = v.
No overshoot is observed.
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Fig. 7. Thermal boundary layer problem: results for the SUPG
method with Pe = 1 000 000. An overshoot of 28% is ob-
served near the outflow (x = 0.05, y = 0.05).

B. Brezzi’s problem

This second test, here named ”Brezzi’s problem”, is sug-
gested in [BRE 98]. The problem statement with the de-
tailed boundary conditions is depicted in Fig. 9. The veloc-
ity field is that of a rigid body uniformly rotating around
the origin.
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Fig. 8. Thermal boundary layer problem: results for our method
with Pe = 1 000 000 and m = v. An overshoot of 3% is
observed along the bottom boundary layer (y = 0.05).
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Fig. 9. Brezzi’s problem: problem statement (dotted lines indi-
cate the flow streamlines).

In the first numerical experiment, the global Péclet number
was about 200. We have used the mesh shown in Fig. 10,
for which the problem is partly diffusion-dominated and
partly convection-dominated. This test is severe in the
sense that the solution presents a first outflow boundary
layer, together with a second boundary layer which termi-
nates in the vicinity of the reentrant corner. Figs. 11 and 12
show the temperature isolines obtained with the SUPG
method and our method, respectively. Again, the solution
obtained by means of our method is of good quality and
does not suffer from any overshoot.
Other numerical experiments with much higher Péclet
numbers were also performed. The results obtained from
our method were still very good and even better than those
obtained with SUPG method (Figs. 13 and 14).
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Fig. 10. Brezzi’s problem: mesh (1219 nodes, 2308 elements).
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Fig. 11. Brezzi’s problem: results from the SUPG method with
Pe=200. Overshoot: 5%.

IV. DISCUSSION AND CONCLUSIONS

An exact Petrov-Galerkin FE method to solve convection-
dominated problems has been proposed. Our approach is
based on using test functions that provide exact nodal val-
ues for a selected class of 1D solutions. Results of very
high quality have been obtained so far. In order to build a
general discretization and solution algorithm, the research
effort will be pursued focusing on the following issues:

1) To determine an optimal balance between the test func-
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Fig. 12. Brezzi’s problem: results from our method with Pe=200
and m = v inside the domain + special treatment at the
boundary. No overshoot.
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Fig. 13. Brezzi’s problem: results from the SUPG method with
Pe = 1 000 000. Overshoot: 64%, undershoot: -5%.

tions provided by our exact Petrov-Galerkin method and
the classical linear test functions of the Galerkin method.
This balance is required to address the problem coming
from possibly very small denominator D in Eqs. 6-7-8 in
case of diffusion-dominated situations, thereby providing
unacceptably large test functions.
2) To select the numerical direction m according to an ap-
propriate criterion.
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Fig. 14. Brezzi’s problem: results from our method with
Pe = 1 000 000 and m = v inside the domain + special
treatment at the boundary. Overshoot: 21%, undershoot:
-12% . Same scale as in Fig. 13.

3) To extend the method to problems with flux (or natural)
boundary conditions, to problems with source terms at the
right-hand side (possibly resulting from transient effects),
and to 3D problems.
4) To use higher order elements.

Although definite conclusions cannot be drawn before hav-
ing addressed the above issues, it is worth nothing that
our research clearly indicates that accurate and reliable ex-
act Petrov-Galerkin FE methods can be built. In addition,
the method we propose directly leads to defining appropri-
ate dimensionless element Péclet numbers and geometrical
factors in order to exactly characterize the local transport
intensity and orientation with respect to the element shape,
hence providing rigourous tools to solve the advection-
diffusion problem on general unstructured meshes.
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